跳转至

动力学模型

动力学模型

晾衣绳模型

等腰三角形、晾衣杆问题,特征为动滑轮通过刚性轻绳固定,有公式:

F=G2cosθF=\dfrac{G}{2\cos\theta}

特征;FF 仅与 θ\theta 有关,上下移动绳子端点力不变,端点水平靠近拉力下降、远离拉力上升。

物体的平衡可以分为稳定平衡、不稳定平衡和随遇平衡三种。

弹簧突变

因为弹簧的弹力无法突变,因此我们:

  1. 受力分析初状态,得出弹簧弹力。

  2. 把弹簧弹力当做外力,重新受力分析。

沿绳方向速度、受力大小一定相等。

斜面模型

斜面模型「物体是否会下滑」,设斜面与水平面夹角为 θ\theta

受力分析,得 Gx=mgsinθG_x=mg\sin\thetaf=μmgcosθf=\mu mg\cos\theta

  • 若物体下滑:Gx>fGx/f>1tanθ/μ>1tanθ>μG_x>f \Rightarrow G_x/f>1 \Rightarrow \tan\theta/\mu>1 \Rightarrow \tan\theta>\mu
  • 同理,若物体静止不动,GxftanθμG_x\le f \Rightarrow \tan\theta\le\mu

即,若 tanθ>μ\tan\theta>\mu,物体会下滑。

同时也可以根据此探究动摩擦因数 μ=arctanθ\mu=\arctan\theta

直角劈模型

注意物体的位置应该在惯性系中表示,否则应用牛顿定律会产生麻烦。

根据已知常量列出方程,例如绳长不变,绳子切面速度相同,以及对应的加速度关系。

典例是直角劈模型,有 θ\theta 角度的直角劈,一木块放在上面,则:

直角劈模型

其中 VVAA 为劈的速度和加速度,xx 为木块相对参考系的水平位移,XX 为木块相对参考系的水平位移,(hy)(h-y) 为木块滑下的竖直高度:

(xX)=(hy)cotθvxV=vycotθaxA=aycotθ\begin{aligned} (x-X)=(h-y)\cot\theta\\ v_x-V=-v_y\cot\theta\\ a_x-A=-a_y\cot\theta \end{aligned}

上式从上到下,实为对方程两边做一次时间变化率,常数项忽略,常数系数不变。

注意:约束方程与作用力无关,各接触面有无摩擦不影响约束方程。

狭义连接体模型

整体法可求得加速度。

隔离法可求得压力/绳子拉力,也可以整体一部分物体。

如果绳子是弯的,那么直接两次隔离把力约掉算加速度。

可以得出,绳子拉力与斜面夹角、摩擦因数均无关:

T=m1m1+m2FT=\dfrac{m_1}{m_1+m_2}F

这个公式可以成为连接体的质量分配原则,其中 11 是绳子没有直接拉着的那个物体。

推广:如果两个物体两侧分别拉着(F1F_1 拉质量为 m1m_1 的物体,F2F_2 对于 m2m_2):

T=F1m2+F2m1m1+m2T=\dfrac{F_1m_2+F_2m_1}{m_1+m_2}

即总是一个力乘上没有直接连接的物体。

等时圆模型

alt text

质点自半径为 RR 的空心球(对于平面而言是圆环)的最高点由静止开始无摩擦地沿任一弦下滑至球面(或圆环),所需时间相等,且等于:

4Rg\sqrt{\dfrac{4R}{g}}

证明:

设下滑的弦与法线的夹角为 β\beta,则弦长:

l=2Rcosβl=2R\cos\beta

沿弦方向加速度为:

a=gcosβa=g\cos\beta

列运动学方程:

l=12at22Rcosβ=12(gcosβ)t2\begin{aligned} l&=\dfrac{1}{2}at^2\\ 2R\cos\beta&=\dfrac{1}{2}(g\cos\beta)t^2 \end{aligned}

易得 ttβ\beta 无关,且:

t=4Rgt=\sqrt{\dfrac{4R}{g}}

经典例题:

一小球从角度为 α\alpha 的斜面上某一点的上方 ll 处沿某一直线无摩擦的滑下,问落到斜面上的最短时间。

由上面的结论,最佳下落线与法线的夹角 θ=α/2\theta=\alpha/2

易知,该圆的直径(QQ 为圆与斜面的切点,HH 为最高点到斜面的垂足):

2R=OQcosθ=OHcos2θ=lcosαcos2(α/2)2R=\dfrac{OQ}{\cos\theta}=\dfrac{OH}{\cos^2\theta}=\dfrac{l\cos\alpha}{\cos^2(\alpha/2)}

则:

R=lcosα1+cosαR=\dfrac{l\cos\alpha}{1+\cos\alpha}

则最短时间:

t=4Rg=2lcosαg(1+cosα)t=\sqrt{\dfrac{4R}{g}}=2\sqrt{\dfrac{l\cos\alpha}{g(1+\cos\alpha)}}

等时圆的构造:

设定一点为最高点或最低点即可,根据几何关系得到距离圆心的距离。

最速降线问题

在平面内,BB 点在 AA 右下,自 AA 静止释放一个小球,运动到 BB 点的最短时间。

最速降线

伯努利(哥哥和弟弟分别)证明了最速降线是一条摆线。

传送带和板块模型

方法总结

例题1:质量为 2kg2\text{kg} 的物体沿光滑斜面下滑,斜面与水平面的夹角为 3737^\circ,求木块的加速度。

列式:

{Fr=maFr=Gsin37G=mgm=2kg\begin{cases} F_r&=ma\\ F_r&=G\sin37^\circ\\ G&=mg\\ m&=2\text{kg} \end{cases}

解得:

{m=2kgG=20NFr=12Na=6m/s2\begin{cases} m&=2&\text{kg}\\ G&=20&\text{N}\\ F_r&=12&\text{N}\\ a&=6&\text{m/s}^2\\ \end{cases}

所以,加速度为 6m/s26\text{m/s}^2,方向沿斜面向下。

例题2:质量为 2kg2\text{kg} 的物体沿斜面下滑,斜面的摩擦因数为 0.20.2,斜面与水平面的夹角为 3737^\circ,求木块的加速度。

列式:

{Fr=maFr=Gsin37ff=μNN=Gcos37G=mgm=2kg\begin{cases} F_r&=ma\\ F_r&=G\sin37^\circ-f\\ f&=\mu N\\ N&=G\cos37^\circ\\ G&=mg\\ m&=2\text{kg} \end{cases}

解得:

{m=2kgG=20NN=16Nf=3.2NFr=8.8Na=4.4m/s2\begin{cases} m&=2&\text{kg}\\ G&=20&\text{N}\\ N&=16&\text{N}\\ f&=3.2&\text{N}\\ F_r&=8.8&\text{N}\\ a&=4.4&\text{m/s}^2\\ \end{cases}

所以,加速度为 4.4m/s24.4\text{m/s}^2,方向沿斜面向下。

例题3:质量为 2kg2\text{kg} 的物体静止于水平面的 AA 处,ABAB 间距 L=20mL=20\text{m},如图:

AB\begin{matrix} \underline{\kern{1em}\Box\kern{7em}\Box\kern{1em}}\\[-0.8em] \cdot\kern{7.5em}\cdot\\[-0.4em] {\small{A}}\kern{7em}{\small{B}} \end{matrix}

现用大小为 30N30\text{N} 的力,沿水平方向拉物体,2s2\text{s} 后到达 BB 处。

求物体与地面的摩擦因数 μ\mu

解:

对物体 AA 受力分析:

{Fr=FfN=G\begin{cases} F_r&=F-f\\ N&=G \end{cases}

展开:

{ma=FμNN=mg\begin{cases} ma&=F-\mu N\\ N&=mg \end{cases}

得到方程组:

{x=12at2ma=Fμmg\begin{cases} x&=\dfrac{1}{2}at^2\\ ma&=F-\mu mg \end{cases}

代数,得:

{20m=12a(2s)22kga=30Nμ20N\begin{cases} 20\text{m}&=\dfrac{1}{2}a\cdot(2\text{s})^2\\ 2\text{kg}\cdot a&=30\text{N}-\mu\cdot20\text{N} \end{cases}

解得:

{a=10m/s2μ=0.5\begin{cases} a&=10\text{m/s}^2\\ \mu&=0.5 \end{cases}

μ=0.5\mu=0.5

传送带模型

加速度:

a=gsinθ±μgcosθa=g\sin\theta\pm\mu g\cos\theta

表示重力下滑分量和滑动摩擦力的作用。

假设可以共速静止,比较 tanθ\tan\thetaμ\mu

判断共速时的位与和传送带长度之间的关系。

善用 vtv-t 图像。

一板一物模型

地面光滑:

  • 木板有初速度。

  • 木板无初速度。

地面不光滑:

  • 木板有初速度。

  • 木板无初速度。

详见课件内容。

叠加体相对静止

广义连接体,指不用绳子连接的连接体,常见的有用静摩擦力、刚体弹力提供的。

叠加体相对静止,可以看为是由摩擦力提供拉力的连接体模型,因此下面的步骤也非常相似。

整体法可求得加速度。

隔离法可求得摩擦力,也可以整体一部分物体。

可以得出,摩擦力与斜面夹角无关,与摩擦因数有关:

f=m1m1+m2Fμmgcosθf=\dfrac{m_1}{m_1+m_2}F-\mu mg\cos\theta

若斜面是水平面(θ=0\theta=0),那么 cosθ=1\cos\theta=1

f=m1m1+m2Fμmgf=\dfrac{m_1}{m_1+m_2}F-\mu mg

同样也类似质量分配原则,其中 11 是力没有直接作用在的那个物体。

叠加体相对滑动

  1. 找到不受外力的物体,即可能会发生相对滑动的物体,
  2. 隔离法,求出这个物体的最大加速度,
  3. 整体法,求出最大的外力大小。

形式一:拉着下面的 MM 走,其上表面 μ1\mu_1、下表面 μ2\mu_2

F=(m+M)(μ1+μ2+tanθ)gcosθF=(m+M)(\mu_1+\mu_2+\tan\theta)g\cdot\cos\theta

若斜面是水平面(θ=0\theta=0),那么 cosθ=1,tanθ=0\cos\theta=1,\tan\theta=0

F=(m+M)(μ1+μ2)gF=(m+M)(\mu_1+\mu_2)g

形式二:拉着上面的 mm 走,其下 MM 上表面 μ1\mu_1、下表面 μ2\mu_2

F=mM(m+M)(μ1μ2)gcosθF=\dfrac{m}{M}(m+M)(\mu_1-\mu_2)g\cdot\cos\theta

若斜面是水平面(θ=0\theta=0),那么 cosθ=1\cos\theta=1

F=mM(m+M)(μ1μ2)gF=\dfrac{m}{M}(m+M)(\mu_1-\mu_2)g

注意此形式下,需要上物体能拉动下物体,拉不动的话就更简单了。

启动模型

解题方法

对(物体),做(运动段),如图(受力分析),列(平衡/牛二)。

F=ma=FfF=Pv\begin{aligned} F_{\text{合}}=ma&=F-f\\ F&=\frac{P}{v} \end{aligned}

得出(一定要受力分析):

F=f+mama=Pvf\begin{aligned} F&=f+ma\\ ma&=\frac{P}{v}-f \end{aligned}

恒定功率启动

随着汽车的加速,

  1. vv 增大,PP 不变,FF 减小,FrF_r 减小;
  2. mm 不变,aa 减小,vv 变化放缓。
  3. 直至 F=fF=f,汽车匀速运动。

即汽车加速到一定程度后,汽车将保持匀速运动。

恒定加速度启动

按照时间顺序:

  1. aa 不变,mm 不变,ff 不变,FF 不变;
  2. vv 增大,PP 增大,汽车持续增速;
  3. 汽车增速到一定程度后,PP 无法继续增大:
  4. 此时 PP 恒定,故进行恒定功率启动式的加速。

做题思路

  1. 对匀速运动状态分析:平衡 F=fF=f
  2. 对匀加速末状态分析:牛二 ma=P/vfma=P/v-f
  3. 对加速阶段状态分析:牛二 ma=P/vfma=P/v-f

F-1/v 图像

按照时间,从右往左,因为汽车速度增大,倒数减小。

  • 牵引力为水平直线的:匀加速运动。
  • 牵引力逐渐下降的:加速度逐渐减小。
  • 牵引力端点位置:最终状态匀速直线运动。

做题方法:同上,一定要分析的是拐点和端点处的受力分析。